

National Oceanic & Atmospheric Administration (NOAA)

Office of Space Commerce (OSC)

Traffic Coordination System for Space (TraCSS)

Conjunction Data Message (CDM) Specification for Traffic Coordination System for Space (TraCSS)

Draft TraCSS-Spec-001

Release: 2.0 Date:

Draft TraCSS CDM Specification 001 Release 2.0 – April 17, 2025 Page 1 of 21

Conjunction Data Message (CDM) Specification for Traffic Coordination System for Space (TraCSS):

Robert Wolff, Dianne Poster, Mariel Borowitz, Brian Walling, Anna Parikka, Ethan Baumann, Craig Diamantopoulos, Quentin Collins, Justin Lorentz, Sarah Pritchard NOAA Office of Space Commerce

Jon Neff, Carson Coursey, Evan Wedell, Eric George, Sergio Alvarado, Matt Hejduk Tom Kelecy, Travis Lechtenberg, Andrew Abraham, Patrick Bauer The Aerospace Corporation

Edwin Rabbipal, Justin Gay, Paul Czosnowski, Austin Thomas, Jovan Torres, Michelle Caputy, Jeff Cornelius Parsons Corporation

> Larry Bormuth United States Space Force

1. Purpose

This specification provides the space situational awareness (SSA) community with the specifications on conjunction data messages (CDM) fields in the CDM product that the Department of Commerce (DOC) Traffic Coordination System for Space (TraCSS) will deliver for on-orbit conjunction assessment (CA).

The TraCSS specifications rely on a format based on the Consultative Committee for Space Data Systems (CCSDS) CDM Recommended Standard 508.0-B-1¹ and Draft Recommended Standard 508.0-P-1.1², with modifications based on the needs of the TraCSS architecture and its users. These modifications have been formulated using input from beta users participating in TraCSS from Phase 1.0 (September 30, 2024) to increment Phase 1.1 (March 2025) and are described in this specification.

¹ Conjunction Data Message. Issue 1. Recommendation for Space Data System Standards (Blue Book), CCSDS 508.0-B-1. Washington, D.C.: CCSDS, June 2013 (This current issue includes all updates through Technical Corrigendum 2, dated October 2021. Available at: https://public.ccsds.org/Pubs/508x0b1e2c2.pdf (Accessed April 17, 2025)

² Conjunction Data Message. Draft Recommended Standard. Draft Recommendation for Space Data Standards (Pink Book) CCSDS 508.0-P1.1, Washington D.C.: CCSDS March 2024. Available at: https://ccsds.org/wp-content/uploads/gravity_forms/9-6f599803174a64f5da08b9814720b5c4/2025/02/508x0p11.pdf (Accessed April 17, 2025)

2. Background

2.1. Consultative Committee for Space Data Systems

The Consultative Committee for Space Data Systems (CCSDS)³ is a multi-national organization of international space agencies that develops open communications and data standards for space systems. CCSDS has multiple working groups developing and publishing standards. The Navigation Working Group family of space data messages are most applicable for use by space launch operators, spacecraft operators, SSA service data providers, analysts, and message exchange partners and are freely accessible at the CCSDS website.

2.2. CCSDS Conjunction Data Message

As detailed by the CCSDS in its March 2023 report, the currently available CCSDS Conjunction Data Message (CDM) 508.0-B-1 specifies a standard message format for exchanging spacecraft conjunction information between providers of CA results and spacecraft owners and operators. The CA results provide information associated with the closest point of approach or local minimum in the difference between the position components of two space object trajectories at their time of closest approach (TCA).

The CDM is the final product of CA results and is intended to provide spacecraft owner/operators with sufficient information to assess the risk of collision and design collision avoidance maneuvers, if necessary.

3. CDM Fields for TraCSS

3.1. CDMs in the TraCSS System

As noted above, the CDM will be the primary product that TraCSS will deliver for onorbit CA. This TraCSS CDM specification was designed to leverage the format present in the CCSDS CDM Recommended Standard 508.0-B-1 and Draft Recommended Standard 508.0-P-1.1 to the max extent possible. Additions to the specifications were made only when changes were necessary to provide additional SSA, or increase the effectiveness of the TraCSS system. Instances of such modifications are noted where present in Table 1 below.

TraCSS CDMs will be made available in multiple formats: Keyword = Value Notation (KVN), Extensible Markup Language (XML), and JavaScript Object Notation (JSON). A CDM will contain identical information regardless of the file format in which it is presented.

If a CDM meets certain alertable emergency criteria, information about the conjunction will be posted as a TraCSS Conjunction Notification (TCN). Posted TCNs will contain a

³ Visit https://ccsds.org/ for more information on the CCSDS. (Accessed April 17, 2025)

limited subset of the information in a typical CDM but will be publicly available for the SSA community. In addition to viewing public TCNs, spacecraft owners/operators will be able to access the full CDM information as normal.

3.2. Specifications for the TraCSS CDM

The CDM consists of the following fields. Where applicable, CDM values will also display units. In the KVN format, units will be displayed per the example below:

MISS_DISTANCE = 22 [m]

Keyword	Description	Example
CCSDS_CDM_VERS	CDM format version in the form of X.Y.	2.0
CLASSIFICATION	Description of dissemination controls	UNCLASSIFIED. "Operator- proprietary data; secondary distribution not permitted", UNCLASSIFIED. "Public TraCSS Conjunction Notification
MEETS_ALERTABLE_CRITERI A	A comment placed here to indicate if this CDM meets TraCSS alertable criteria defined in the TraCSS user handbook.	YES NO
CREATION_DATE	File creation date/time in UTC in month-day format	2015-07-04T12:00:00.000000
ORIGINATOR	Creating agency or operator	TraCSS
MESSAGE_FOR	Spacecraft name(s) for which the CDM is provided	STARLINK-61, <secondary satellite name></secondary
MESSAGE_ID	ID that uniquely identifies the CDM message.	000049304_conj_000005614 _2024287050914
RUN_ID	The unique ID of the conjunction analysis run that produced this CDM, for traceability.	258526987
CORRELATION_ID	The unique ID correlates the CDM to the package of SP	258526987

Table 1: TraCSS CDM Specification

Keyword	Description	Example
	Vectors used by TraCSS. May	
	be used by operators to get	
	insight on SP Vector updates	
ТСА	The Date and Time of the	2015-07-04T12:00:00.000000
	conjunction in UTC ISO8601	
	format	
MISS_DISTANCE	The overall separation	437
	distance of both objects at	
	TCA in meters	
MAHALANOBIS_DISTANCE	The length of the relative	12
	position vector, normalized	
	to one-sigma dispersions of	
	the combined error	
	covariance in the direction of	
	the relative position vector	
RELATIVE_SPEED	The magnitude of the relative	15031
	velocity vector in meters/sec.	
	The speed at which both	
	objects are moving relative	
	to each other at TCA in	
	meters/second	
COLLISION_PROBABILITY	The probability of collision	0.00003656957
	(Pc) calculated from values of	
	0.0 to 1.0	
COLLISION_PROBABILITY_M	The method utilized to	FOSTER-1992
ETHOD	calculate probability of	
	collision	
COLLISION_MAX_PROBABILI	The maximum collision	0.001243656957
ТҮ	probability that Object1 and	
	Object2 will collide	
COLLISION_MAX_PC_METH	Method used to calculate	FRISBEE
OD	COLLISION_MAX_PROBABILIT	
	Υ	
DILUTION_STATUS	Flag indicating whether	ROBUST
	conjunction is in the dilution	DILUTED
	region or robust region.	
DILUTION_SIGNIFICANCE	Value indicating difference	
	between Pc and Max Pc. This	
	relates how severely diluted	
	a conjunction is or how safely	
	robust it is.	

Keyword	Description	Example
SCREEN_PC_THRESHOLD	The collision probability	0
	screening threshold	
	used to identify this	
	conjunction.	
ENVIRONMENTAL_IMPACT_	Value indicating number of	2438
FRAGMENTATION	predicted fragments if this	
	collision were to occur	
FRAGMENTATION_MODEL	Free text field containing the	
	name of the space	
	environment fragmentation	
	model used	
START_SCREEN_PERIOD	The start time in UTC of the	2015-07-04T12:00:00.000000
	screening period for the	
	conjunction assessment	
STOP_SCREEN_PERIOD	The stop time in UTC of the	2015-07-09T12:00:00.000000
	screening period for the	
	conjunction assessment	
FIELDS	BELOW REPEATED FOR OBJECT	1 AND 2
Each field wi	ll have SAT1_ or SAT2_ Prepend	ed to the key
		0.000
OBJECT	The object for which the	OBJECT 1
	metadata applies	OBJECT 2
OBJECT_DESIGNATOR	The SCC or NORAD CAT ID for	25544
	the object	DOD Catalan
	The satellite catalog used for	
	the object	
		Catala a
OBJECT_NAME	The common name for the	STARLINK-61
		COSMOS 1408 DEB
INTERNATIONAL_DESIGNAT	for the chiest is a 2000	1998-06
OR	for the object in a YYY-	
	NINNY (PP), WHERE:	
	NNN - Three digit corial	
	NINN = Inree-digit serial	
	DIDD - At least and carity	
	$P\{PP\}$ = At least one capital	
	letter for the identification of	

Keyword	Description	Example
	the part brought into space	
	by the launch.	
SCREENING_DATA_SOURCE	The data used to generate	DoD HAC State Vector
	the CDM	O/O Operational Ephemeris
		O/O Candidate Ephemeris
		Commercial SSA Provider
EPHEMERIS_NAME	The MESSAGE_ID of the	NONE
	ephemeris utilized if the data	d49d5103-1124-4909-952a-
	source is an OCM	a391d92dc372
OBJECT_TYPE	Category of type of object	PAYLOAD
		ROCKET BODY
		DEBRIS
		UNKNOWN
		OTHER
OPS_STATUS	Specification of the	OPERATIONAL_MANEUVERA
	operational	BLE
	status of the space object.	NONOPERATIONAL
	Information will be pulled	
	from corresponding OCM if	Full list can be found on the
	available.	SANA Registry at
		https://sanaregistry.org/r/operati onal_status/
MANEUVERABLE	The maneuvering capability	YES
	of the object for collision	NO
	avoidance. This field will be	UNKNOWN
	populated with information	
	from corresponding OCM, or	
	TraCSS database of satellite	
	information if available	
OPERATOR_ORGANIZATION	The organization of the	SpaceX
	owner/operator of the object	
OPERATOR_PHONE	The phone number of the	284-135-4239
	owner/operator of the	
	object. Space-Track will place	
	a URL for a query that will	
	lead to this information	
OPERATOR_EMAIL	The e-mail of the	First.last@email.org
	owner/operator of the	
	object. Space-Track will place	

Keyword	Description	Example
	a URL for a query that will	
	lead to this information	
COVARIANCE_METHOD	The method of which	CALCULATED
	covariance is calculated.	DEFAULT
	When covariance cannot be	
	calculated, default values	
	may be used. Caution should	
	be used when using default	
	values when calculating Pc	
ORBIT_CENTER	The central body about	EARTH
	which Object1 and Object2	SUN
	orbit. If not specified, the	
	center is assumed to be	
	Earth.	
GRAVITY_MODEL	The name of the gravity	EGM-96: 36D 360
	model used for propagation.	
	Information will be pulled	
	from corresponding OCM if	
	available.	
ATMOSPHERIC_MODEL	The name of the atmospheric	JBH09
	model used for propagation.	
	Information will be pulled	
	from corresponding OCM if	
	available.	
N_BODY_PERTURBATIONS	The gravitational	MOON, SUN
	perturbation models used in	
	a comma separated format.	
	Information will be pulled	
	from corresponding OCM if	
	available.	
SOLAR_RAD_PRESSURE	Indicates whether solar	YES
	radiation pressure was used	NO
	during the Orbit	
	Determination (OD) of the	
	object. Information will be	
	pulled from corresponding	
	OCM if available.	
EARTH_TIDES	Indicates whether solid Earth	YES
	and ocean tides were used in	NO
	the OD of object. Information	
	will be pulled from	

Keyword	Description	Example
	corresponding OCM if	
	available. Will be YES if both	
	OCEAN_TIDES_MODEL and	
	SOLID_TIDES_MODEL are YES	
INTRACK_THRUST	Indicates whether in-track	YES
	thrust modeling was used for	NO
	the OD and propagation of	
	the object.	
TIME_LASTOB_START	The binned time in UTC of	2015-07-04T12:00:00.000000
	the start of the timespan that	
	contains observations used in	
	the OD.	
	If last observation time < 24	
	hours from CDM creation,	
	TIME_LASTOB_START =	
	CREATION_DATE - 1 day	
	If 24 < last observation time <	
	48, TIME_LASTOB_START =	
	CREATION_DATE – 2 days	
	If last observation time < 48	
	hours, TIME_LASTOB_START	
	= CREATION DATE - 180	
	days	
TIME_LASTOB_END	The binned time in UTC of	2015-07-04T12:00:00.000000
	the end of the timespan that	
	contains observations used in	
	the OD.	
	If last observation time < 24	
	hours from CDM creation,	
	TIME_LASTOB_END =	
	CREATION_DATE	
	If 24 < last observation time <	
	48, TIME_LASTOB_END =	
	CREATION_DATE – 1 day	
	If last observation time < 48	
	hours, TIME_LASTOB_END =	
	CREATION_DATE – 2 days	
RECOMMENDED_OD_SPAN	The recommended time span	2.76
	for the OD of the object in	
	days. Information will be	

Keyword	Description	Example
	pulled from corresponding	
	OCM if available.	
ACTUAL_OD_SPAN	The actual time span used in	2.76
	the OD of the object in days.	
	Information will be pulled	
	from corresponding OCM if	
	available.	
OBS_AVAILABLE	Total amount of observations	57
	available for the OD of the	
	object. Information will be	
	pulled from corresponding	
	OCM if available.	
OBS_USED	Actual number of	57
	observations used in the OD	
	of the object. Information	
	will be pulled from	
	corresponding OCM if	
	available.	
TRACKS_AVAILABLE	The number of sensor tracks	7
	available for	
	the OD of the object.	
	Information will be pulled	
	from corresponding OCM if	
	available.	
TRACKS_USED	The number of sensor tracks	7
	accepted for	
	the OD of the object.	
	Information will be pulled	
	from corresponding OCM if	
	available.	
RESIDUALS_ACCEPTED	The percentage of residuals	99.3
	accepted in the OD of the	
	object	
WEIGHTED_RMS	The weighted Root Mean	1.4
	Square (RMS) of the residuals	
	Trom a batch least squares	100
APOAPSIS_ALTITUDE	The apogee of the object in	460
	km above oblate earth	
	surface	

Keyword	Description	Example
PERIAPSIS_ALTITUDE	The perigee of the object in	437
	km above oblate earth	
	The inclination of the object	60.7
	in deg	66.7
HBR	The Hard Body Radius in m	3.00
	used by the TraCSS system to	
	calculate probability of	
	collision	
AREA_PC	The cross-sectional area of	3.12
	the object in m2. This value is	
CD AREA OVER MASS	The object's $CD \bullet A/m$ used in	0 161615504658
	the propagation of the vector	0.101013304030
	and covariance to TCA in	
	m2/kg	
CR_AREA_OVER_MASS	The object's CR•A/m used in	0
	the propagation of the vector	
	and covariance to TCA in	
	m2/kg	0
THRUST_ACCELERATION	the object's acceleration in the in-track or Transverse (T)	0 634
	direction (RTN) used for	0.034
	propagating the state vector	
	and covariance until TCA in	
	m/s2	
SEDR	The Specific Energy	0.020492
	Dissipation Rate, which is the	
	amount of energy being	
	orbit by the non-conservative	
	forces. This value is an	
	average calculated during the	
	OD	
MASS	The mass of the object in kg	10.1
RELATIVE_POSITION_R	If in Object 1's section:	-57
	The radial (R) component of	
	Object 2's position relative to	
	Object 1 in Object 1's RTN	
	coordinate frame in meters	

Keyword	Description	Example
	If in Object 2's section:	
	Vice versa the above	
RELATIVE_POSITION_T	If in Object 1's section:	-264
	The transverse (T)	
	component of Object 2's	
	position relative to Object 1	
	in Object 1's RTN coordinate	
	frame in meters	
	If in Object 2's section:	
	Vice versa the above	
RELATIVE_POSITION_N	If in Object 1's section:	260
	The normal (N) component	
	of Object 2's position relative	
	to Object 1 in Object 1's RTN	
	coordinate frame in meters	
	If in Object 2's section:	
	Vice versa the above	4 5
RELATIVE_VELOCITY_R	If in Object 1's section:	1.5
	The radial (R) component of	
	Object 2's velocity relative to	
	Object 1's velocity in Object	
	1's RIN coordinate frame in	
	meters/second	
	If in Object 2's section:	
	Vice verse the above	
	If in Object 1's section:	14072 6
	The transverse (T)	-14072.0
	somponent of Object 2's	
	volocity rolative to Object 2's	
	velocity relative to Object 1's	
	searchingto frame in	
	coordinate frame in	
	meters/second	
	If in Object 2's soction:	
	Vice verse the above	
	If in Object 1's section:	2511 5
KELATIVE_VELUCITY_N	IT IN Object 1's section:	-2011.0

Keyword	Description	Example
	The normal (N) component	
	of Object 2's velocity relative	
	to Object 1's velocity in	
	Object 1's RTN coordinate	
	frame in meter/second	
	If in Object 2's section:	
	Vice versa the above	
APPROACH_ANGLE	If in Object 1's section:	30
	The angle between the	
	inertial velocity vector of	
	Object1 and the inertial	
	velocity vector of Object2	
	with respect to Object1. 0	
	degrees reflects "overtaking"	
	and 180 degrees reflects	
	"head-on" condition.	
	If in Object 2's section:	
	Vice versa the above	
SCREEN_VOLUME_SHAPE	Shape of the screening	ELLIPSOID
	volume: ELLIPSOID or BOX.	BOX
SCREEN_VOLUME_FRAME	Name of the Object 1 or	RTN
	Object 2 centered reference	
	frame in which the screening	
	volume data are given.	
SCREEN_VOLUME_X	The R component size of the	0.4
	screening volume in the	
	SCREEN_VOLUME_FRAME in	
	km	
SCREEN_VOLUME_Y	The T component size of the	25
	screening volume in the	
	SCREEN_VOLUME_FRAME in	
	km	
SCREEN_VOLUME_Z	The N component size of the	25
	screening volume in the	
	SCREEN_VOLUME_FRAME in	
	km	

Keyword	Description	Example
REF_FRAME	Name of the reference frame	EME2000 for position and
	for the provided state vectors	velocity
X	Object position vector X	1670.352554
	component in km	
Y	Object position vector Y	-6834.579872
	component in km	
Z	Object position vector Z	-1430.950837
	component in km	
X_DOT	Object velocity vector X	2.780391335
	component in km/s	
Y_DOT	Object velocity vector Y	2.808606433
	component in km/s	
Z_DOT	Object velocity vector Z	-5.751722603
	component in km/s	
CR_R	Object covariance matrix	2.762478951638903E+01
	[1,1] in m2 in Object 1's RTN	
	coordinate frame	
CT_R	Object covariance matrix	-6.541950061667144E+00
	[2,1] in m2 in Object 1's RTN	
	coordinate frame	
ст_т	Object covariance matrix	1.090607087502915E+03
	[2,2] in m2 in Object 1's RTN	
	coordinate frame	
CN_R	Object covariance matrix	-1.587445746741558E+00
	[3,1] in m2 in Object 1's RTN	
	coordinate frame	
CN_T	Object covariance matrix	-5.317841526701392E+01
	[3,2] in m2 in Object 1's RTN	
	coordinate frame	
CN_N	Object covariance matrix	8.797136762538368E+01
	[3,3] in m2 in Object 1's RTN	
	coordinate frame	
CRDOT_R	Object covariance matrix	-6.857932575721321E-03
	[4,1] in m2/s in Object 1's	
	RIN coordinate frame	
	Object covariance matrix	-1.093942116989287E+00
	[4,2] in m2/s in Object 1's	
	RIN coordinate frame	
CRDOT_N	Object covariance matrix	5.141264772990662E-02
	[4,3] in m2/s in Object 1's	
	RTN coordinate frame	

Keyword	Description	Example
CRDOT_RDOT	Object covariance matrix	1.122438786460208E-03
	[4,4] in m2/s2 in Object 1's	
	RTN coordinate frame	
CTDOT_R	Object covariance matrix	-2.853074300735485E-02
	[5,1] in m2/s in Object 1's	
	RTN coordinate frame	
CTDOT_T	Object covariance matrix	5.986579249990964E-03
	[5,2] in m2/s in Object 1's	
	RTN coordinate frame	
CTDOT_N	Object covariance matrix	1.478514422166540E-03
	[5,3] in m2/s in Object 1's	
	RTN coordinate frame	
CTDOT_RDOT	Object covariance matrix	7.996126426440161E-06
	[5,4] in m2/s2 in Object 1's	
	RTN coordinate frame	
CTDOT_TDOT	Object covariance matrix	2.947267656834074E-05
	[5,5] in m2/s2 in Object 1's	
	RTN coordinate frame	
CNDOT_R	Object covariance matrix	-6.272024074839294E-03
	[6,1] in m2/s in Object 1's	
	RTN coordinate frame	
CNDOT_T	Object covariance matrix	-5.847356784490015E-02
	[6,2] in m2/s in Object 1's	
	RTN coordinate frame	
CNDOT_N	Object covariance matrix	2.510808305542750E-02
	[6,3] in m2/s in Object 1's	
	RTN coordinate frame	
CNDOT_RDOT	Object covariance matrix	5.918716392405004E-05
	[6,4] in m2/s2 in Object 1's	
	RTN coordinate frame	
CNDOT_TDOT	Object covariance matrix	6.412943205733823E-06
	[6,5] in m2/s2 in Object 1's	
	RTN coordinate frame	
CNDOT_NDOT	Object covariance matrix	3.037280667193719E-05
	[6,6] in m2/s2 in Object 1's	
	RTN coordinate frame	
DENSITY_FORECAST_UNCER	The dynamic considers	2.14337031000000E-0
TAINTY	parameter (DCP) 1-sigma	
	uncertainty of the relative	
	atmospheric density for the	
	specified object (given as a	

Keyword	Description	Example
	simple ratio). This is the	
	uncertainty of the average	
	atmospheric density exerting	
	drag on the object, relative to	
	the nominal (measured)	
	atmospheric density	
DCP_SENSITIVITY_POSITION	The DCP position sensitivity in	-7.345809012167026E+02
_R	the radial (R) direction	
	expressed in the object's	
	radial-transverse-normal	
	(RTN) reference frame in	
	meters. This sensitivity vector	
	relates changes in the object's	
	TCA position vector to	
	variations in relative	
	atmospheric density and is in	
	meters	
DCP_SENSITIVITY_POSITION	The DCP position in the	3.865957136169006E+05
_T	transverse (T) direction in m	
DCP_SENSITIVITY_POSITION	The DCP position in the	-1.456925086066596E+02
_N	Normal (N) direction in m	
DCP_SENSITIVITY_VELOCITY	The DCP velocity in the radial	-2.195009966872100E+02
_R	(R) direction that relates	
	changes in the object's TCA	
	inertial velocity vector to	
	variations in relative	
	atmospheric density and is in	
	m/s	
DCP_SENSITIVITY_VELOCITY	The DCP velocity in the	2.630946954519584E-01
_T	transverse (T) direction in m/s	
DCP_SENSITIVITY_VELOCITY	The DCP velocity in the	3.265607422364180E-01
_N	normal (N) direction in m/s	

Appendix 1: Engineering Justification for Draft TraCSS-Spec-001

This appendix supports the "Draft Conjunction Data Message (CDM) Specification for Traffic Coordination System for Space (TraCSS) TraCSS-Spec-001" dated April 17, 2025, as it is released for public feedback.

As decisions were made regarding the TraCSS CDM specification, it became apparent that choices were made that not all TraCSS users would agree with and that would potentially impact the parsing tools used by satellite operators. The TraCSS Standards working group faced a number of competing priorities that balanced the continued use of existing message formats against facilitating the growth of TraCSS space situational awareness (SSA) capabilities and preventing the need to make future specification changes to allow for those capabilities.

TraCSS highly values the international standards community and based the TraCSS CDM specification on the CCSDS Conjunction Data Message recommended standard. While it is recognized the CCSDS CDM Pink Book standard will soon be published, and much of TraCSS-Spec-001 was in alignment with what is forthcoming, the message format in its pure form was somewhat restrictive, and made the parsing of information contained in the messages overly burdensome.

To overcome these limits, the draft TraCSS-Spec-001-2.0 moves away from these limitations and are presents them for public feedback. Many of the updates in the draft follow the draft CCSDS CDM Pink Book standard, but several do not.

This appendix offers insight into cases where there are exceedances of the CCSDS standard and explain why the TraCSS standards team believes they are worthwhile in pursuit of improvement to spaceflight safety communications.

- 1. The first category are fields added to the TraCSS CDM spec that enable greater Space Situational Awareness (SSA). By adding the following additional fields, it provides satellite operators have more insight into upcoming conjunctions. These fields are:
 - MAHALANOBIS_DISTANCE
 - COLLISION_MAX_PROBABILITY
 - COLLISION_MAX_PROBABILITY_METHOD
 - DILUTION_STATUS
 - DILUTION_SIGNIFICANCE
 - ENVIRONMENTAL_IMPACT_FRAGMENTATION
 - FRAGMENTATION_MODEL
 - APPROACH_ANGLE

Of these fields, most satellite operators heavily involved in the SSA community are likely familiar with all except "Environmental_Impact_Fragmentation". As TraCSS has the goal to reduce the risk of spaceflight operations, the team

thought it was prudent to include this metric to give insight into the possible environmental impact of a collision on the space environment, and other spacecraft. This field also offers support for the United Nations Committee on the Peaceful Use of Outer Space goals to achieve greater sustainability of the outer space environment through greater awareness of the potential to generate space debris.

- 2. The second category pertains to fields that come from the current CDMs offered on space-track.org. The commercial space community is expected to migrate from using existing SSA services offered by the 18th and 19th Space Defense Squadrons and space-track.org to the TraCSS system by January 2026. To assist with this transition. TraCSS will not eliminate the provision of any data that space-track.org users are familiar with or use on a regular basis. Rather, several additional new fields to those in paragraph 1 above are incorporated that are not included in the published CCSDS CDM standard or provided by space.track.org:
 - **APOAPSIS_ALTITUDE** (renamed to match the draft CCSDS pink book standard)
 - **PERIAPSIS_ALTITUDE** (renamed to match the draft CCSDS pink book standard)
 - **INCLINATION** (renamed to match the draft CCSDS pink book standard)
 - DCP_SENSITIVITY_POSITION_R (broken into components to match the way vectors are handled elsewhere in the specification)
 - DCP_SENSITIVITY_POSITION_T
 - DCP_SENSITIVITY_POSITION_N
 - DCP_SENSITIVITY _VELOCITY_R (broken into components to match the way vectors are handled elsewhere in the specification)
 - DCP_SENSITIVITY_VELOCITY_T
 - DCP_SENSITIVITY_VELOCITY_N
- 3. The third category are fields added to add transparency to the TraCSS system. Some of these are unique to give insight into TraCSS system processes. Others are new to the TraCSS system due to the utilization of the Orbit Comprehensive Messages (OCMs) as input data rather than plain ephemeris files. TraCSS CDMs will include much more information about users' ephemeris than in the existing processes with space-track.org. Many of these fields will simply make it easier to use the TraCSS system and search for information that users are looking for, again offering additions to grow capabilities within TraCSS to make it more useful. These transparency fields are:
 - OPS_STATUS
 - SCREENING_DATA_SOURCE
 - RUN_ID

- CORRELATION_ID
- MEETS_ALERTABLE_CRITERIA
- 4. The fourth category goes beyond new fields. Specifically, there are slight adjustments to the way that the KVN standard is formatted. The first being the prepended SAT1_ and SAT2_ markers. Key Value notation is intended to have a single key paired to a single value. In the existing KVN format, the section repeated for each object has the same key repeated, causing challenges in building parsers for the message. The TraCSS system will prepend SAT1_ and SAT2_ to these fields so each value will have a unique key. This is intended to make it easier for users new to the community to interact with TraCSS. Additionally, TraCSS is providing CDM messages in a variety of data formats including JSON, XML, and csv with the same goal of providing flexibility for satellite operators.
- 5. The fifth category pertains to the comment fields. The comment fields in the existing space-track.org CDMs are another example of breaking KVN format. This key is repeated, and then does not follow the same 'key' = 'value' format of the other fields. The TraCSS CDM spec does not include any comment fields because the team believes they make parsing the message for the desired data overly complex.
- 6. The sixth category pertains to reference frames. TraCSS is choosing to output state vectors in the EME2000 frame rather than the ITRF frame output by the current space-track.org CDMs. This frame is more relevant to satellite operators and will make CDM analysis more accessible to newer users.
- 7. Lastly, and probably most importantly, is the change to the prevailing concept that a CDM is intended for object1 (often called the primary object) and that additional calculations must be performed to generate a CDM representing the same conjunction from object2's (often called the secondary object) perspective. Instead, TraCSS will generate a single message and distribute it to both users. In this paradigm object1 and object2 are simply descriptors for the two space objects involved in a conjunction and are not intended to convey that object1 is a protected primary object and object2 is a secondary object.

The specification changes to make this happen are relatively simple. The following fields will be moved into the object specific sections:

- RELATIVE_POSITION_R
- RELATIVE_POSITION_T
- RELATIVE_POSITION_N
- RELATIVE_VELOCITY_R

- RELATIVE_VELOCITY_T
- RELATIVE_VELOCITY_N
- APPROACH_ANGLE
- SCREEN_VOLUME_SHAPE
- SCREEN_VOLUME_FRAME
- SCREEN_VOLUME_X
- SCREEN_VOLUME_Y
- SCREEN_VOLUME_Z

This will cause CDMs generated by the TraCSS system to be "symmetrical". This means that the message is equally relevant to the object1 operators and to the object2 operators.

This change has advantages and disadvantages that are listed below.

Advantages:

- TraCSS can generate a single CDM for the single conjunction instead of two. This will speed up processing, and reduce data storage costs
- Discussing a conjunction with other satellite operators, or TraCSS operators will be easier because everyone will be discussing the same document that can be identified by things like message_id rather than discussing two similar documents.
- The TraCSS team sees a potential future where routine screenings become less common, and TraCSS is constantly performing one v all screenings as new data is streamed into the system. Having symmetrical CDMs that can be distributed to the operators of both objects greatly simplifies the screening process in this case.
- Related to the previous point, if TraCSS ever does change the screening
 process to be more streaming focused, this change to the specification may
 be required. Making the spec change now, before users are using the system
 helps ensure we won't have to ask users to change to accommodate TraCSS
 process changes after the TraCSS system is operational.
- Perhaps most importantly, this change would actually result in satellite operators receiving CDMs that they otherwise would not receive. While uncommon, there are ephemeris and covariance geometries that result in object2 being in the screening volume of object1, but not the other way around. There is potential that object2 is an active payload, but object1 is debris. In this case, even though there could be a relatively high Pc, no one will receive the generated CDM, because the debris object has no owner. The change to send the CDM to both users will mitigate this edge case.

Disadvantages:

- Satellite operators will not be guaranteed to be object1 on any given CDM. For the operators that auto-ingest CDMs, to perform analysis, they will have to account for this in their code.
- For operators who receive CDMs from sources other than space-track, they will have to make sure their parsers can handle TraCSS CDMs as well as CDMs from other sources.

In the interest of TraCSS users, and advancing the system for better SSA capabilities and future needs, the disadvantages are not seen as barriers to users. The community is encouraged to provide feedback on this specification and start discussion on ways to improve this specification to enable satellite operators to more easily retrieve SSA information.