Recommendations on Conjunction Data Message Fields for Department of Commerce Traffic Coordination System for Space (TraCSS)

Dianne Poster, Christine Joseph, Mariel Borowitz, Brian Walling, Clark Hudak NOAA Office of Space Commerce

Jon Neff, Carson Coursey, Evan Wedell, Eric George, Sergio Alvarado, Matt Hejduk, Tom Kelecy, Patrick Bauer The Aerospace Corporation

> Nathan Holzrichter, Elizabeth Jaszkowiak MITRE Corporation

> > Date: March 29, 2024

1. Purpose

This document provides the space situational awareness (SSA) community with information on proposed conjunction data messages (CDM) fields in the CDM product that Department of Commerce (DOC) Traffic Coordination System for Space (TraCSS) will deliver for on-orbit conjunction assessment (CA). TraCSS will use the format recommended by the Consultative Committee for Space Data Systems (CCSDS) CDM recommended standard 508.0.P1.0.1, with plans to modify as necessary to meet the needs of the SSA community. Section 3 of this document provides a comprehensive description of the recommended fields.

This document also describes an opportunity to learn about the content of this document through a listening session to be held by OSC and provide comments during the session or by email following the webinar as described in Section 4 in this document. In particular, DOC welcomes feedback on:

- 1. whether information in the CDM fields is considered proprietary;
- 2. if there are operational considerations if the information in certain fields was not available;
- 3. if the proposed fields are representative of an operationally actionable data set assembled for a CDM;
- 4. if any of the proposed fields are considered to be not necessary; and
- 5. if there are additional fields that should be included in the proposed list.

This document does not provide an overview of TraCSS. More information on TraCSS, including videos, is available at the TraCSS website¹. For more information on standards for data exchange and TraCSS, see the document "Recommendations on Standards for Provision of Space Situational Awareness Data from Department of

¹ Visit <u>https://www.space.commerce.gov/traffic-coordination-system-for-space-tracss/</u> for more information on TraCSS, including videos.

Commerce Traffic Coordination System for Space (TraCSS)"². The document referenced in footnote two provides highlights on TraCSS and gives a listing of identified and described proposed SSA data types that will be provided by TraCSS to other SSA platforms and satellite operators. The document referenced in footnote two also provides information on international standards developing organizations, interoperability, data exchange, and recommendations are provided for published standards to represent and transmit these data types out from TraCSS.

2. Background

2.1. Consultative Committee for Space Data Systems

The Consultative Committee for Space Data Systems (CCSDS)³ is a multi-national organization of international space agencies that develops open communications and data standards for space systems. The standards are available through the International Organization for Standardization (ISO) Technical Committee 20, Aircraft and Space Vehicles, Subcommittee 13, Space Data and Information Transfer Systems, and at the CCSDS website.

CCSDS has multiple working groups developing and publishing standards. The Navigation Working Group family of space data messages are most applicable for use by space launch operators, spacecraft operators, SSA service data providers, analysts, and message exchange partners and are freely accessible at the CCSDS website. Many space data exchange standards already exist. These are reviewed via a periodic review cycle of no more than five years and cover a wide range of messages and formats.

2.2. CCSDS Conjunction Data Message

As detailed by the CCSDS in its March 2023 report⁴, the currently available CCSDS Conjunction Data Message (CDM) 508.0-B-1⁵ specifies a standard message format for exchanging spacecraft conjunction information between providers of CA results and spacecraft owners and operators. CA is the process of predicting conjunction events by comparing orbit predictions derived from observations and orbit determination solutions

² Visit <u>https://www.space.commerce.gov/video-update-on-tracss-data-standards-and-formats/</u> for a video overview of "Recommendations on Standards for Provision of Space Situational Awareness Data from Department of Commerce Traffic Coordination System for Space (TraCSS)" and <u>https://www.space.commerce.gov/wp-content/uploads/January-2024-Recommendations-TraCSS-Standards-for-Data-Exchange.pdf</u> for a copy of the recommendations.

³ Visit <u>https://public.ccsds.org/default.aspx</u> for more information on the CCSDS.

⁴ Navigation Data Messages, Overview, Informational Report (Green Book), CCSDS 500.2-G-3 Washington, D.C.: CCSDS, March 2023. Available at: <u>https://public.ccsds.org/Pubs/500x2g3.pdf</u>

⁵ Conjunction Data Message. Issue 1. Recommendation for Space Data System Standards (Blue Book), CCSDS 508.0-B-1. Washington, D.C.: CCSDS, June 2013 (This current issue includes all updates through Technical Corrigendum 2, dated October 2021. Available at: <u>https://public.ccsds.org/Pubs/508x0b1e2c2.pdf</u> (Accessed March 22, 2024)

for more than one space object. The CA results provide information associated with the closest point of approach or local minimum in the difference between the position components of two space object trajectories at their time of closest approach (TCA).

Within the overall CA processes, the owner/operator (o/o) of a spacecraft exchanges orbital data messages with the CA providers/CDM originators. Once the screening of conjunction events is completed, a CDM is transmitted to the owner/operator of a spacecraft or the group that performs the conjunction assessment analysis. CA considerations when assessing the conjunction risk include the trajectory geometry, collision probability and variability, evolution and trends, prediction quality, as well as mitigation strategies and maneuver evaluation. The assessment of each solution is based on the number of tracks and observations, last observations, sensor geometry and observability, fit span, residual acceptance, weighted root-mean square, ballistic coefficient, solar radiation pressure coefficient, energy dissipation rate, radar cross sectional area, force modeling (e.g., solid Earth tides), and consistency between solutions.

In summary, the CDM is the final product of CA results and is intended to provide spacecraft owner/operators with sufficient information to assess the risk of collision and design collision avoidance maneuvers, if necessary. The CDM can also tell the operator when insufficient information is available and so follow up tasking is required to reduce uncertainty. Therefore, the information exchanged within a CDM notifies the spacecraft operator(s) of possible conjunctions with another space object and enables consistent warning by different organizations employing diverse CA techniques. Conjunction information includes data types such as the identity of the affected objects, miss distance, probability of collision (Pc), TCA, closest approach relative position and velocity, Cartesian states of the affected objects at TCA, and a covariance matrix that reflects the uncertainty of the states. Full information describing the conjunction information contained in this message can be found in the document cited in footnote five.

It is important to note the CCSDS CDM is currently undergoing revision because of the mandatory CCSDS five-year review, but the document cited in footnote five is in use today. For example, the 18th and 19th (18 & 19) Space Defense Squadron (SDS), Combined Force Space Component Command, Vandenberg Space Force Base, California, USA, has leveraged the CCSDS CDM in operations. It is their primary means of notifying an operator of a conjunction assessment. A full description of the 18 & 19 SDS processes for on-orbit conjunction assessment and collision avoidance is provided in the document "Spaceflight Safety Handbook for Satellite Operators" ⁶. See Annex C in footnote 6 for a comprehensive reference on the fields included in an 18 & 19 SDS (i.e., 19 SDS) CDM, noting Annex C makes use of the CCSDS CDM 508.0-P-

⁶ Spaceflight Safety Handbook for Satellite Operators, Version 1.7, April 2023; 18th & 19th Space Defense Squadron, Combined Force Space Component Command, Vandenberg Space Force Base, California, USA. Available at: <u>https://www.space-track.org/documents/SFS_Handbook_For_Operators_V1.7.pdf</u> (Accessed March 25, 2024)

1.0.1, where the "P" stands for "pink book". This "P" version is the CCSDS draft recommended standard that is an update to 508.0-B-1 (where the "B" is a blue book") and is released for formal review. All CCSDS obligatory fields are in the 19 SDS CDM.

The CCSDS CDM is also used at the National Aeronautics and Space Administration Johnson Space Center in support of human spaceflight operations and at Goddard Space Flight Center for the support of conjunction assessment risk analysis (CARA) operations.

3. CDM Fields for TraCSS

As noted above, the CDM will be the primary product that TraCSS will deliver for onorbit CA. The format will be that recommended by CCSDS CDM 508.0-B-1, noting 508.0-P-1.0.1 will be used once that version's formal review is completed and the document is published by CCSDS. Table 1 is a comprehensive reference of the fields that are proposed be included in a TraCSS CDM for TraCSS Phase 1.0. It is noted that CCSDS CDM data fields are comma-separated variable fields, in a particular order as shown, but a message string can be customized and vary in length.

In summary, the TraCSS Phase 1.0 CDM fields recommendations are to:

- 1. include all CCSDS CDM 508.0-B-1 fields, even for those fields that are not published in the 19 SDS CDM;
- 2. continue to use COMMENT fields for instances where the 19 SDS CDM uses COMMENT fields, until CCSDS CDM 508.0-B-1 is updated;
- add new keywords for data that the 19 SDS CDM currently has in COMMENT fields where there are no existing keywords to help with tagging, indexing, and searching;
- 4. announce TraCSS will deprecate TraCSS CDM COMMENT fields if CCSDS CDM 508.0-B-1 is updated; and
- 5. continuously work with the CCSDS Navigation Working Group to update the CCSDS CDM standard.

Note: Fields marked with an asterisk (*) will only have information in the CDM if the requisite input data is available to and distributable by TraCSS. OSC is interested in feedback from the community on the operational impacts if such information is not included in a CDM.

Keyword	Description	Example
CCSDS_CDM_VERS	CDM format version in the	1.0
	form of X.Y.	

Table 1. The proposed total list of fields for a TraCSS CDM:

COMMENT	A comment can be placed	CDM ID:XXXXXXXXX
	here for reader's	_
	information. Currently 18	
	SPCS places the CDM ID	
	in the comment section	
CREATION DATE	File creation date/time in	2015-07-
CREATION_DATE		04T12:00:00 000000
	Creating agapay or	
ORIGINATOR	Creating agency or	JSPOC
	operator	
MESSAGE_FOR	Spacecraft name for which	STARLINK-61
	the CDM is provided	
MESSAGE_ID	ID that uniquely identifies	000012345_conj_0000543
	the CDM message.	21_2022067143221_0651
		4372256137
ТСА	The Date and Time of the	2015-07-
	conjunction in UTC	04T12:00:00.000000
MISS DISTANCE	The overall separation	437
-	distance of both objects at	
	TCA in meters	
RELATIVE SPEED	The magnitude of the	15031
	relative velocity vector in	
	meters/sec. The speed at	
	which both chicota are	
	moving relative to each	
	other at TCA in	
	meters/second	
RELATIVE_POSITION_R	The R component of	43.2, -574
	Object 2's position relative	
	to Object 1 in an RTN	
	coordinate frame in meters	
RELATIVE_POSITION_T	The T component of	43.2, -57
	Object 2's position relative	
	to Object 1 in an RTN	
	coordinate frame in meters	
RELATIVE POSITION N	The N component of	43.2574
	Object 2's position relative	,
	to Object 1 in an RTN	
	coordinate frame in meters	
RELATIVE VELOCITY R	The R component of	-36.3 41.7 12971.8
	Object 2's velocity relative	
	to Object 1's valacity in an	
	DTN poordingto frame in	
RELATIVE_VELOCITY_T	I ne I component of	-36.3, 41.7, 12971.8
	Object 2's velocity relative	
	to Object 1's velocity in an	

	RTN coordinate frame in			
	meters/second			
RELATIVE_VELOCITY_N	The N component of	-36.3, 41.7, 12971.8		
	Object 2's velocity relative			
	to Object 1's velocity in an			
	RTN coordinate frame in			
	meter/second			
COLLISION_PROBABILI	If applicable, the	0.000003656957		
TY	probability of collision (Pc)			
	calculated by 18 SPCS			
	from values of 0.0 to 1.0			
COLLISION_PROBABILI	The method utilized to	FOSTER-1992		
TY_METHOD	calculate probability of			
	collision			
COMMENT Screening	The screening mode used	Stand-Off, Ellipsoid,		
Option	by the 18 SPCS to predict	Covariance		
	the conjunction contained			
	in the CDM. Options			
	include stand-off radius,			
	ellipsoid and covariance			
COMMENT Screened	The data used by 18	inertial state vector		
with	SPCS to generate the	unknown state vector type		
	CDM			
START_SCREEN_PERIO	The start time in UTC of			
D	the screening period for			
STOR SOREEN DEDIOR	assessment			
STOP_SCREEN_PERIOD	the scop lime in UTC of			
	the screening period for			
SCREEN VOLUME SHA	Shape of the screening			
DE				
SCREEN VOLUME ERA	Name of the Object1			
MF	centered reference frame			
	in which the screening			
	volume data are given			
	Available options are RTN			
	and Transverse Velocity			
	and Normal (TVN)			
SCREEN VOLUME X	The R or T (depending on			
	if RTN or TVN is selected)			
	component size of the			
	screening volume in the			

	SCREEN_VOLUME_FRA ME	
SCREEN_VOLUME_Y	The T or V (depending on if RTN or TVN is selected) component size of the screening volume in the SCREEN_VOLUME_FRA ME	
SCREEN_VOLUME_Z	The N component size of the screening volume in the SCREEN_VOLUME_FRA ME	
SCREEN_ENTRY_TIME	The time in UTC when Object2 enters the screening volume	
SCREEN_EXIT_TIME	The time in UTC when Object2 exits the screening volume	
ORBIT_CENTER	The central body about which Object1 and Object2 orbit. If not specified, the center is assumed to be Earth.	EARTH, SUN

FIELDS BELOW REPEATED FOR OBJECT 1 AND 2

OBJECT	The object for which the metadata applies	OBJECT 1 OBJECT 2
OBJECT_DESIGNATOR	The SCC or NORAD CAT ID for the object	25544
CATALOG_NAME	The satellite catalog used for the object	DOD Catalog
OBJECT_NAME	The common name for the object	STARLINK-61, COSMOS 1408 DEB
INTERNATIONAL_DESIG NATOR	The International Designator for the object in a YYYY-DDDXXX format notating the year and day of launch followed by at least one capital letter to discern between objects of the same launch.	1998-06

OBJECT_TYPE	Category of type of object	PAYLOAD, ROCKET BODY, DEBRIS, UNKNOWN, OTHER
OPERATOR_CONTACT_ POSITION	The contact position of the owner/operator of the object. Space-Track will place a URL for a query that will lead to this information	
OPERATOR_ORGANIZA TION	The organization of the owner/operator of the object	SpaceX, Iridium, CNES
OPERATOR_PHONE	The phone number of the owner/operator of the object. Space-Track will place a URL for a query that will lead to this information	
OPERATOR_EMAIL	The e-mail of the owner/operator of the object. Space-Track will place a URL for a query that will lead to this information	
EPHEMERIS_NAME	The name of the ephemeris utilized if the data source is ephemeris	NONE MEME_25544_ISS_16512 00_operunclassified.txt
COVARIANCE_METHOD	The method of which covariance is calculated. When covariance cannot be calculated, default values may be used. Caution should be used when using default values when calculating Pc	CALCULATED DEFAULT
MANEUVERABLE	The maneuver capability of the object	[Will reflect o/o inpuuted statement of capability, upon registration of satellite in TraCSS.]
REF_FRAME	Name of the reference frame for the provided state vectors	[Default] EME2000 for position and velocity (RTN/UVW) with rotation term for covariance

*GRAVITY MODEL	The name of the gravity	EGM-96: 36D 360	
	model used for		
	propagation		
	The name of the	IBH00	
	atmospheric model used		
	for propagation		
		MOON, SON	
ONS	perturbation models used		
	In a comma separated		
	format	<u> </u>	
SOLAR_RAD_PRESSUR	Indicates whether solar	YES	
E	radiation pressure was	NO	
	used during the Orbit		
	Determination (OD) of the		
	object		
*EARTH_TIDES	Indicates whether solid	YES	
	Earth and ocean tides	NO	
	were used in the OD of		
	object		
*INTRACK_THRUST	Indicates whether in-track	YES	
	thrust modeling was used	NO	
	for the OD and		
	propagation of the object		
COMMENT Covariance	The scale that covariance	1.000000	
Scale Factor	is multiplied by		
COMMENT Exclusion	The radius of a sphere in	5.000000	
Volume Radius	meters to create a		
	spherical volume		
	representative of the object		
	and used in the Pc		
	calculation		
*TIME_LASTOB_START	The time in UTC of the	2015-07-	
	start of the timespan that	04T12:00:00.000000	
	contains observations		
	used in the OD. This time		
	will start at the latest		
	accepted observation		
*TIME_LASTOB_END	The time in UTC of the end	2015-07-	
	of the timespan that	04T12:00:00.000000	
	contains observations		
	used in the OD. This time		
	will end at the most recent		
	accepted observation		
*RECOMMENDED OD S	The recommended time	2.76	
PAN	span for the OD of the		
	object in days		

*ACTUAL OD SPAN	The actual time span used	2.76	
	in the OD of the object in		
	davs		
*OBS AVAILALBE	Total amount of	57	
	observations available for		
	the OD of the object		
*OBS_USED	Actual number of	57	
000_0020	observations used in the	01	
	OD of the object		
*RESIDUALS ACCEPTE	The percentage of	00.3	
	residuals accepted in the	55.5	
	OD of the object		
*WEIGHTED RMS	The weighted Boot Mean	11	
	Square (RMS) of the	1.7	
	residuals from a batch		
	least squares		
	The apogee of the object	460	
Altitude	in km		
COMMENT Perigee	The perigee of the object	437	
Altitude	in km		
COMMENT Inclination	The inclination of the	60.7	
	object in deg		
COMMENT Operator	If input by an	0.00	
Hard Body Radius	owner/operator, the Hard		
	Body Radius of the object		
	in meters		
AREA PC	The area of the object	2.2642	
—	used in the Pc calculation		
	in m2		
*CD AREA OVER MASS	The object's CD•A/m used	0.161615504658	
	in the propagation of the		
	vector and covariance to		
	TCA in m2/kg		
*CR_AREA_OVER_MASS	The object's CR•A/m used	0	
	in the propagation of the		
	vector and covariance to		
	TCA in m2/kg		
*THRUST_ACCELERATI	The object's acceleration	0	
ON	in the In-track or R	0.634	
	direction (RTN) used for		
	propagating the state		
	vector and covariance until		
	TCA in m/s2		
*SEDR	The average amount of	0.020492	
	energy being removed		
	from an object's orbit due		

	to atmospheric drag in			
	W/kg			
^AREA_DRG	The effective area of the			
	object exposed to			
	atmospheric drag in m2			
^AREA_SRP	The effective area of the			
	object exposed to solar			
MA 00	The man and the shire of			
MASS	The mass of the object			
X	Object position vector X	1670.352554		
	component in km			
Y	Object position vector Y	-6834.579872		
	component in km			
Z	Object position vector Z	-1430.950837		
	component in km			
X_DOT	Object velocity vector X	2.780391335		
	component in km/s			
Y_DOT	Object velocity vector Y	2.808606433		
	component in km/s			
Z_DOT	Object velocity vector Z -5.751722603			
	component in km/s			
COMMENT DCP Density	The dynamic considers	2.14337031000000E-0		
Forecast Uncertainty	parameter (DCP) 1-sigma			
	uncertainty of the relative			
	atmospheric density for the			
	specified object (given as a			
	simple ratio). This is the			
	uncertainty of the average			
	atmospheric density			
	exerting drag on the			
	object, relative to the			
	nominal (measured)			
	atmospheric density			
COMMENT DCP	The DCP position	-7.345809012167026E+02		
Sensitivity Vector RTN	sensitivity vector	3.865957136169006E+05		
Pos	expressed in the object's	-1.456925086066596E+02		
	radial-transverse-normal			
	(RTN) reference frame in			
	meters. This sensitivity			
	vector relates changes in			
	the object's TCA position			
	vector to variations in			
	relative atmospheric			
	density and is in meters			

DCP Sensitivity Vector	The DCP velocity		-2.195009966872100E+02	
RTN Vel	sensitivity vector relates		2.630946954519584E-01	
	changes in the object's		3.265607422364180E-01	
	TCA inertial v	elocity vector		
	to variations in	n relative		
	atmospheric of	density and is		
	in meters/sec			
CR_R		Object covari	ance matrix [1,1] in m2	
CT_R		Object covari	ance matrix [2,1] in m2	
CT_T		Object covari	ance matrix [2,2] in m2	
CN_R		Object covari	ance matrix [3,1] in m2	
CN_T		Object covari	ance matrix [3,2] in m2	
CN_N		Object covari	ance matrix [3,3] in m2	
CRDOT_R		Object covari	ance matrix [4,1] in m2/s	
CRDOT_T		Object covariance matrix [4,2] in m2/s		
CRDOT_N Object		Object covari	ance matrix [4,3] in m2/s	
CRDOT_RDOT Objec		Object covari	ance matrix [4,4] in m2/s2	
CTDOT_R Object		Object covari	ance matrix [5,1] in m2/s	
CTDOT_T Object		Object covari	ance matrix [5,2] in m2/s	
CTDOT_N		Object covariance matrix [5,3] in m2/s		
CTDOT_RDOT		Object covari	ance matrix [5,4] in m2/s2	
CTDOT_TDOT		Object covari	ance matrix [5,5] in m2/s2	
CNDOT_R	CNDOT_R Ot		Object covariance matrix [6,1] in m2/s	
CNDOT_T Obje		Object covari	ance matrix [6,2] in m2/s	
CNDOT_N	Object covari		ance matrix [6,3] in m2/s	
CNDOT_RDOT	Object covari		ance matrix [6,4] in m2/s2	
CNDOT_TDOT Ob		Object covariance matrix [6,5] in m2/s2		
CNDOT_NDOT		Object covariance matrix [6,6] in m2/s2		

Below is information included in the 19 SDS CDM COMMENT fields. These are not explicitly in the CCSDS standard. DOC welcomes comments on the use of this information in COMMENT fields vs. having a data field:

- 1. CDM_ID
- 2. Screening Option
- 3. Screened with
- 4. Covariance Scale Factor
- 5. Exclusion Volume Radius
- 6. Apogee Altitude
- 7. Perigee Altitude
- 8. Inclination
- 9. Operator Hard Body Radius
- 10. DCP Density Forecast Uncertainty
- 11. DCP Sensitivity Vector RTN Pos

- 12. DCP Sensitivity Vector RTN Vel
- 13. TraCSS_ID
- This would be the system ID at the database level. All data relationships should be built using a unique identifier other than NORAD_ID due to the volatility of a potential NORAD_ID. This can be used within the comment field.

4. Webinar and Opportunity to Comment

OSC will be holding a no-cost listening session describing the data types and recommendations for standards described in this document on Wednesday, April 3, 2024. Registration⁷ will be required to receive the link to the listening session, please visit the website referenced in footnote 7 to register.

OSC is particularly interested in feedback regarding the following items:

- Is any of the information within individual CDM fields considered proprietary?
- OSC proposes default reference frames of EME2000 for position and velocity and (RTN/UVW) with rotation term for covariance. Are there significant operational impacts to the community if such reference frames are the default? Are there alternate reference frames OSC should consider as the default, and why?
- Fields marked with an asterisk (*) in Table 1 will only have information in the CDM if the requisite input data is available to and distributable by TraCSS. OSC is interested in feedback from the community on the operational impacts if such information is not included in a CDM.

During the webinar, there will be 15 minutes of presentation time from OSC on the recommended CDM data fields for the provision of CDMs for TraCSS as described in this paper. The presentation time will be followed by 45 minutes for registered participants to provide up to three minutes of comments on the recommendations. Registered participants will need to indicate during their registration if they would like to provide oral comments and will be called upon during the webinar in the order of registrations received. The number of registered commenters will be allowed up to the maximum time allowed for comments to be received. If you are not able to provide oral comments during the webinar for any reason, including not being provided time during the allotted time due to the capacity of the time being reached by the number of commenters or you are not able to attend the webinar for any reason, including electrical or power outages to your media systems due to weather or other events Force Majeure, you have the option to provide written comments as described below in the next paragraph.

⁷ Visit the TraCSS website to register for the listening session at: <u>https://www.space.commerce.gov/traffic-coordination-system-for-space-tracss/</u>

For up to 5:00 pm Eastern Time Friday, April 26, 2024, following the webinar (Wednesday, April 3, 2024), written comments may be sent by email to the following email address <u>tracss.commerce@noaa.gov</u> with the subject identified as "Comments on CDM data fields".

Written comments should be no more than ten (10) electronic word-processed pages that are sized "8.5 inches x 11 inches" with "1 inch" margins top, bottom, left, and right and a font of any type at a "12-point" size. If more than ten (10) word-processed pages are submitted in a document but are within the physical criteria provided, only the first 10 pages will be read, the remaining pages will not be read, and will not be returned.

No confidential business information, or otherwise sensitive or protected information, should be submitted orally or in writing. Any such information will be ignored.

Except as described above, there will be no adjudication of comments received orally during the webinar on April 3, 2024, or written per the processes described in Section 4 of this document. Received oral or written comments may be summarized by OSC or its collaborators in presentations that will be presented in future webinars, workshops, or conferences that may or may not be open to the public, or through publications that may be publicly available and free of charge to readers on government or government-supported websites pertaining to TraCSS.

Any questions regarding this document may be sent by email to the following address: <u>tracss.commerce@noaa.gov</u> or by calling the Office of Space Commerce at +1(202) 482-6125 (U.S. toll number, charges may apply).

Acknowledgement: We thank Larry Bormuth, CIV United States Space Force, HQSF/HQ/CTIO/IDXD-SPOC/CDO, for helpful discussions on space data standards.